Exploiting Fine Block Triangularization and Quasilinearity in Differential-algebraic Equation Systems

نویسندگان

  • NEDIALKO S. NEDIALKOV
  • GUANGNING TAN
  • JOHN D. PRYCE
چکیده

The Σ-method for structural analysis of a differential-algebraic equation (DAE) system produces offset vectors from which the sparsity pattern of DAE’s system Jacobian is derived; this pattern implies a fine block-triangular form (BTF). This article derives a simple method for quasilinearity analysis of a DAE and combines it with its fine BTF to construct a method for finding the minimal set of initial values needed for consistent initialization and a method for a block-wise computation of derivatives for the solution to the DAE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion Methods, Block Triangularization, and Structural Analysis of Differential-Algebraic Equation Systems

In a previous article, the authors developed two conversion methods to improve the Σ -method for structural analysis (SA) of differential-algebraic equations (DAEs). These methods reformulate a DAE on which the Σ -method fails into an equivalent problem on which this SA is more likely to succeed with a generically nonsingular Jacobian. The basic version of these methods processes the DAE as a w...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Graph Theory, Irreducibility, and Structural Analysis of Differential-algebraic Equation Systems

The Σ-method for structural analysis of a differential-algebraic equation (DAE) system produces offset vectors from which the sparsity pattern of a system Jacobian is derived. This pattern implies a block-triangular form (BTF) of the DAE that can be exploited to speed up numerical solution. The paper compares this fine BTF with the usually coarser BTF derived from the sparsity pattern of the si...

متن کامل

Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms

Article history: Received 1 September 2011 Received in revised form 15 January 2012 Accepted 21 January 2012 Available online 23 February 2012 Manymechanical systems of practical interest contain closed kinematic chains, and aremost conveniently modeled using a set of redundant generalized coordinates. The governing dynamic equations for systems with more coordinates than degrees-of-freedom are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014